157 research outputs found

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs

    Get PDF
    In graph sparsification, the goal has almost always been of global nature: compress a graph into a smaller subgraph (sparsifier) that maintains certain features of the original graph. Algorithms can then run on the sparsifier, which in many cases leads to improvements in the overall runtime and memory. This paper studies sparsifiers that have bounded (maximum) degree, and are thus locally sparse, aiming to improve local measures of runtime and memory. To improve those local measures, it is important to be able to compute such sparsifiers locally. We initiate the study of local algorithms for bounded degree sparsifiers in unweighted sparse graphs, focusing on the problems of vertex cover, matching, and independent set. Let eps > 0 be a slack parameter and alpha ge 1 be a density parameter. We devise local algorithms for computing: 1. A (1+eps)-vertex cover sparsifier of degree O(alpha / eps), for any graph of arboricity alpha.footnote{In a graph of arboricity alpha the average degree of any induced subgraph is at most 2alpha.} 2. A (1+eps)-maximum matching sparsifier and also a (1+eps)-maximal matching sparsifier of degree O(alpha / eps, for any graph of arboricity alpha. 3. A (1+eps)-independent set sparsifier of degree O(alpha^2 / eps), for any graph of average degree alpha. Our algorithms require only a single communication round in the standard message passing model of distributed computing, and moreover, they can be simulated locally in a trivial way. As an immediate application we can extend results from distributed computing and local computation algorithms that apply to graphs of degree bounded by d to graphs of arboricity O(d / eps) or average degree O(d^2 / eps), at the expense of increasing the approximation guarantee by a factor of (1+eps). In particular, we can extend the plethora of recent local computation algorithms for approximate maximum and maximal matching from bounded degree graphs to bounded arboricity graphs with a negligible loss in the approximation guarantee. The inherently local behavior of our algorithms can be used to amplify the approximation guarantee of any sparsifier in time roughly linear in its size, which has immediate applications in the area of dynamic graph algorithms. In particular, the state-of-the-art algorithm for maintaining (2-eps)-vertex cover (VC) is at least linear in the graph size, even in dynamic forests. We provide a reduction from the dynamic to the static case, showing that if a t-VC can be computed from scratch in time T(n) in any (sub)family of graphs with arboricity bounded by alpha, for an arbitrary t ge 1, then a (t+eps)-VC can be maintained with update time frac{T(n)}{O((n / alpha) cdot eps^2)}, for any eps > 0. For planar graphs this yields an algorithm for maintaining a (1+eps)-VC with constant update time for any constant eps > 0

    A Generalized Matching Reconfiguration Problem

    Get PDF
    The goal in reconfiguration problems is to compute a gradual transformation between two feasible solutions of a problem such that all intermediate solutions are also feasible. In the Matching Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given a graph G and two matchings M and M\u27, and we are asked whether there is a sequence of matchings in G starting with M and ending at M\u27, each resulting from the previous one by either adding or deleting a single edge in G, without ever going through a matching of size < min{|M|,|M\u27|}-1. Ito et al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition. In this paper we introduce a natural generalization of the MRP that depends on an integer parameter ? ? 1: here we are allowed to make ? changes to the current solution rather than 1 at each step of the {transformation procedure}. There is always a valid sequence of matchings transforming M to M\u27 if ? is sufficiently large, and naturally we would like to minimize ?. We first devise an optimal transformation procedure for unweighted matching with ? = 3, and then extend it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these procedures is linear. We further demonstrate the applicability of this generalized problem to dynamic graph matchings. In this area, the number of changes to the maintained matching per update step (the recourse bound) is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known dynamic matching algorithms are prohibitively large, much larger than the corresponding update times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for maintaining a ?-approximate maximum cardinality matching with update time T, for any ? ? 1, T and ? > 0, can be transformed into an algorithm for maintaining a (?(1 +?))-approximate maximum cardinality matching with update time T + O(1/?) and worst-case recourse bound O(1/?). This result generalizes for approximate maximum weight matching, where the update time and worst-case recourse bound grow from T + O(1/?) and O(1/?) to T + O(?/?) and O(?/?), respectively; ? is the graph aspect-ratio. We complement this positive result by showing that, for ? = 1+?, the worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary, several key dynamic approximate matching algorithms - with poor worst-case recourse bounds - are strengthened to achieve near-optimal worst-case recourse bounds with no loss in update time
    corecore